Extensions 1→N→G→Q→1 with N=C23 and Q=C2xC22

Direct product G=NxQ with N=C23 and Q=C2xC22
dρLabelID
C24xC22352C2^4xC22352,195

Semidirect products G=N:Q with N=C23 and Q=C2xC22
extensionφ:Q→Aut NdρLabelID
C23:1(C2xC22) = C11xC22wrC2φ: C2xC22/C11C22 ⊆ Aut C2388C2^3:1(C2xC22)352,155
C23:2(C2xC22) = C11x2+ 1+4φ: C2xC22/C11C22 ⊆ Aut C23884C2^3:2(C2xC22)352,192
C23:3(C2xC22) = D4xC2xC22φ: C2xC22/C22C2 ⊆ Aut C23176C2^3:3(C2xC22)352,189

Non-split extensions G=N.Q with N=C23 and Q=C2xC22
extensionφ:Q→Aut NdρLabelID
C23.1(C2xC22) = C11xC23:C4φ: C2xC22/C11C22 ⊆ Aut C23884C2^3.1(C2xC22)352,48
C23.2(C2xC22) = C11xC4.4D4φ: C2xC22/C11C22 ⊆ Aut C23176C2^3.2(C2xC22)352,159
C23.3(C2xC22) = C11xC42:2C2φ: C2xC22/C11C22 ⊆ Aut C23176C2^3.3(C2xC22)352,161
C23.4(C2xC22) = C11xC4:1D4φ: C2xC22/C11C22 ⊆ Aut C23176C2^3.4(C2xC22)352,162
C23.5(C2xC22) = C22:C4xC22φ: C2xC22/C22C2 ⊆ Aut C23176C2^3.5(C2xC22)352,150
C23.6(C2xC22) = C11xC42:C2φ: C2xC22/C22C2 ⊆ Aut C23176C2^3.6(C2xC22)352,152
C23.7(C2xC22) = D4xC44φ: C2xC22/C22C2 ⊆ Aut C23176C2^3.7(C2xC22)352,153
C23.8(C2xC22) = C11xC4:D4φ: C2xC22/C22C2 ⊆ Aut C23176C2^3.8(C2xC22)352,156
C23.9(C2xC22) = C11xC22:Q8φ: C2xC22/C22C2 ⊆ Aut C23176C2^3.9(C2xC22)352,157
C23.10(C2xC22) = C11xC22.D4φ: C2xC22/C22C2 ⊆ Aut C23176C2^3.10(C2xC22)352,158
C23.11(C2xC22) = C4oD4xC22φ: C2xC22/C22C2 ⊆ Aut C23176C2^3.11(C2xC22)352,191
C23.12(C2xC22) = C11xC2.C42central extension (φ=1)352C2^3.12(C2xC22)352,44
C23.13(C2xC22) = C4:C4xC22central extension (φ=1)352C2^3.13(C2xC22)352,151
C23.14(C2xC22) = Q8xC2xC22central extension (φ=1)352C2^3.14(C2xC22)352,190

׿
x
:
Z
F
o
wr
Q
<